
making sense of text and data

GraphDB Workshop

DMZ, 1st March 2023

making sense of text and data

Graph General

DMZ, 1st March 2023

When to Use Graphs

o Need to understand latent relationships

o Rapidly traverse relationships for insights, patterns

o Data is variable & does not fit 2D model of rows and columns

o Integrate disparate heterogeneous data sources

o Visualize clustering of data based on connections or patterns

making sense of text and data

Ontotext - GraphDB

DMZ, 1st March 2023

Company Highlights

Atanas Kiryakov (CEO)
Founded Ontotext in 2000

Veska Davidova (COO)
Joined Ontotext in 2013,
ex. Atos, Siemens, HP

Vassil Momtchev (CTO)
Joined Ontotext in 2005

Deron Ryan (CCO)
Joined Ontotext in 2022, ex.
ScienceLogic, Microsoft

Doug Kimball (CMO)
Joined Ontotext in 2022,
ex. Stibo Systems, Nielsen

• Ontotext - global leader in RDF graph databases, knowledge management and content analytics

• Established in 2000 as an R&D lab

• Growth funding round in 2022

• Employees: ~110 / Presence in Europe, USA and APAC

• Verticals include Financial Services, Life Sciences, Health Care, Manufacturing, Publishing

OVERVIEW

MANAGEMENT TEAM

Global Leaders Choose Ontotext

IT systems monitoring in retail banking

Building management systems

Oil & Gas Market Analysis Tool

Preclinical Discovery & Roche
Scientific Interoperability Hub

What Do We Do?

Connect data into reusable
graphs to power deep analytics

We help enterprises get
profound insights by linking:
• Disparate databases and systems
• Proprietary & global data
• Structured data and documents

The Big Picture of the Graph Platform

Metadata flow

Semantic processing

Gen.AI
Chatbots

Downstream
Analytics

End-user
Apps BI

CONSUME

Vector
DB

Search
Engine

similar
entities & docs

LPG
Engine

source data

sh
ar

e
re

su
lts

KM Tools
& Text

Analysis

Office
Automation

Platforms

Data
Catalogues

DM Tools
Data Integration,

Quality and
Governance

Conceptual Model
Ontologies, Schemas, Taxonomies,

Domain knowledge

Users, Entities, Reference Data

Extracted Facts, Analytic Findings

Enterprise
Knowledge

Graph

search
index

Semantic
Knowledge
Hub m

et
ad

at
a

query
virtualize or ETL

Semantic
Data

Fabricm
et

ad
at

a

Document
Store

AI
LLM, …

use

st
or

e

o Scalable and Dependable RDF 1.1 engine

o Predictable performance across wide range of workloads

o ACID compliant transactions

o Platform Independent (Java)
o W3C Standards Compliant

o Comprehensive support for RDF, SPARQL, OWL 2, and SHACL

o Reasoning and Validation
o High-Availability Cluster and Enterprise-Grade Security
o Connectors for Upstream and Downstream Integration
o Free Community Support & Dedicated Commercial support and maintenance

GraphDB Essentials

GraphDB Editions

FREE
Delivers a fully functional database
optimized for desktop use and small
commercial prototypes:

o No constraints on data scale

o Limited to one concurrent read

o Single inference thread

o Lucene connector for indexing

ENTERPRISE
Offers cluster support for enterprise
resilience and high-availability:

o Eliminates having single point of failure

o Multi-data center support

o Unlimited scalability of read operations

o Elasticsearch, OpenSearch, Solr and Kafka

o Operation mode

o Self-service

 On-prem/Cloud
 Technical support with SLA

o Managed service

 AWS / Azure marketplaces
 Service availability with SLA

o Deployment options

o Native installation packages

(zip, msi, dmg, deb, rpm)

o Docker/Helm charts

o AMI & Azure VM

Multiple Operation and Deployment Options

GDB Self-hosted GDB Self-hosted
via Marketplace

GDB Managed
Service

Channel Ontotext Direct AWS / Azure AWS / Azure

SLA/Dev
support

Recommended Recommended Required

Hosting Client Client Ontotext

Operation Client Client Ontotext

Architecture

o GraphDB Workbench
o storage and retrieval of triples

through semantic queries

o REST API for database access

o GraphDB Engine

o Various extensions &
connectors enable tailoring
for specific needs and use
cases.

o Plugins

GraphDB
Workbench

Exploration,
Visual Graphs

Applications

GraphDB

Ontotext Platform

Tabular
data

GraphQL
query &

mutation

GraphQL
Federation

Semantic
Similarity

OntoRefine

Legacy
Databases

and
Systems

Connectors

RDF
Rank

Geo-
spatial

Custom JS Functions Analytics & Bespoke Indices

Custom
Analytics

GraphDB
JS Driver

Semantic
Objects

-aaS

Validation,
Access
Control

SPARQL

Services

Analytics (classification, link prediction,
recommendation, etc.)

Text Analysis (custom pipelines)

Data Integration & Linking

Tabular data

Text,
Docs

Editing and
Curation Tools

Full-text
search

JSON
Docs

Custom
Connector

SP
AR

Q
L

SP
AR

Q
L

Dev. Tools
(GraphiQL,
SWAPI, …)

Ontology &
Vocabulary

Editors

BI Tools
(Tableau, …)

JDBC
Driver

Access, Customization and Integration Points

o SPARQL 1.1 with SPARQL-star extensions
o Many SPARQL extensions that provide additional functionality
o GraphQL
o Beyond vanilla SPARQL

o Faceting and full-text search

o Graph path search

o Geographic query extensions

o Ranking of RDF nodes

o Similarity search

Query, Search and Retrieve

o Knowledge Graph access and updates via GraphQL
o Data validation via RDF Shapes
o Semantic Business Objects definitions done by business analysts

o GraphQL Schema and shapes generated from Semantic Objects

GraphQL Access via Semantic Objects

Ontotext
Compiler

making sense of text and data

Knowledge Graphs

DMZ, 1st March 2023

Fortune 100 Companies leverage Knowledge Graphs

Well Known KGs

• DiffBot
• ShopBot
• Wikidata / DBPedia
• YAGO
• ConceptNet
• Metaweb
• Freebase
• OpenIE
• Gdelt
• GeoNames
• Cyc
• WIKI Media

• Microsoft Satori (powers Bing and Cortana)
• Google KG (powers Google Search and Google Assistant)
• Amazon Ivi Information Graph (powers Amazon Alexa)
• ESCO – European Labor Market KG about Occupations,

Skills and Qualifications
• ERNIE: A knowledge graph-enhanced language model
• LYNX PROJECT manage compliance, based on a legal

knowledge graph (LKG)

Examples of Knowledge Graphs

https://arxiv.org/abs/1905.07129

What is a Knowledge Graph?

Interlinked descriptions
of concepts and entities

Concepts

Concepts

Concepts

Concepts

Concepts

• Concepts describe each other
• Connections provide context
• Context helps comprehension

Can be used as a:
• Database: can be queried
• Graph: can be analyzed as a network
• Knowledge base: new facts can be inferred

Datasets

Entities Concepts

Docs

AI
Models

Knowledge Graphs – Why, What and How

Data analytics & AI/LLM initiatives 

Challenged in unified view across diverse data sources.

KGs are a Game Changer because they:
o Establish a machine-readable contract about the meaning of the data
o Use semantic metadata to interconnect and harmonize siloed data
o Enrich data with external domain knowledge

Our platform enables enterprises to build a solid data foundation for:
o Expedited data discovery and integration
o Continuous unification and layering of usage-centric models (e.g. ontologies)
o Standardized data exchange and publishing
o Accurate interpretation of data governed in decentralized manner (data mesh)

Why Knowledge Graphs?

Knowledge Graph Application Mindmap

Document
Search

Text
Analytics

LEGEND

…

3rd Party
ETL Tools

Analytics

Exploration

Building

Operations

Knowledge
Graph

Management

Access APIs
& Federation

Search Tools

Inference

Data
Analytics

Text
Analytics

Logical
Inference

MPP Analytics
Platforms

Embedding

Ontology
Management

Taxonomy
Editor

Data
Transformation

Data Validation &
Quality Control

Data
Discovery

Classification

Data
Virtualization

Storage &
Indexing

Visualization

Recommendation

Linking,
Reconciliation,

Fusion

Schema
Alignment

Graph
Search

Corpus Man.
& Curation

SPARQL
High

Availability

Access
Control

Deployment
& Monitoring

Document
Search

Charts &
Customized

Data
Catalog

JDBC

GraphQL

Reference/Meta
Data Updates

Data Cleaning &
NormalizationData Prep.

Ref. Data
Updates

Instance
Data Man.

…
Generic

Link
Prediction

Forms &
Dashboards

ETL

Shapes

Ontotext
Product

Partner
Product

Solutions & Services
Chat Bots

Kafka

Knowledge Graph Management Capabilities

Graphs to Knowledge Graphs

• Best way to represent lineage is via a knowledge graph

• 2 ways to represent lineage right now

• OpenLineage standard &

• Semantic standard PROV-O (an open standard for describing Provenance in RDF)

• Easy to folding provenance into a KG or other graph-based representations

• Collect information from Systems, Information may be Incomplete or Contradictory.

• Inferencing and Graph Analytics KGs can sort contradictory information in reliably

• Graphs great for representing evolution of lineage and how it changes over time.

Lineage with KGs

https://data.world/blog/3-ways-to-confirm-your-data-catalog-is-really-powered-by-a-knowledge-graph/
https://openlineage.io/
https://www.w3.org/TR/prov-o/

• Not every graph is a KG as the Property Graph vendor advocates allude.
• Graph of a LAN network is not a KG if there is no schema and semantics.
• KGs are not about searching paths between nodes
• KGs are about putting data in context via linking and semantic metadata.
• KGs are structured around collection of interlinked descriptions of entities – real-

world objects and events, or abstract concepts.
• Descriptions must have formal semantics to allow people & machines to process

unambiguously.

Not Every Graph is a KG

What Is a Knowledge Graph

o Graph Database with a Knowledge Toolkit

o Knowledge of a Domain as Graph — Network of Entities &
Relationships

o Represents Entities, Facts & Models of a Domain

o Includes Rich Rules with Inferencing, Reasoning from
Relationships

o Entity Resolution and Extraction to deal with messy data

1. Identity Resolution (IRI): Unique Address to Concept - Internationalized Resource Identifier

2. Meaning Resolution (Ontologies): Data modeling for shared understanding

3. Triple Expression (RDF, OWL): Columnar  Semantic Structure – Subjects, Objects linked
by predicates. Ensures Concepts are Defined and Understood at granular level.

4. Business Rules (SHACL): Conditional Expressions For Criteria. Rules linked to ontologies
ensure meaning is shared not obscured.

Semantic Building Blocks

https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/

Semantic Foundational Capabilities

Quality : Linking with ontology ensures Precision of Meaning - Concepts, Systems, People & processes

Concept Reuse: Using standards Eliminates Assumptions. Enables reuse of concepts

Context: Semantic standards allow Separation of Business Logic from Code

Lineage Traceability: Data is linked to Identifier - Enabling Tracing, Automates Lineage & Provenance

Governance: Standards & Identity govern meaning, Structural Validation

Machine-Readable: Standards written in language for humans & machines. Automatic validation & DQ

Automated Continuous Testing: With standards Change is Linked to a testing process

Key Characteristic of Semantic KG

• Machine-interpretable - Standards allows Shared Understanding, Use/ Reuse
• Relations as First-class citizens
• Follows Open Standards

Triple Store (RDF Graph DB)

RDF

RDFS

OWL

SP
AR

Q
L

Data Model

Data Store

Ontology/
Semantics

KG Stack

making sense of text and data

Graph Models – LPG, RDF

DMZ, 1st March 2023

LPG – ExampleLPG Example

What is LPG – Labeled Property Graph

Name, Lat,
Long, Pop

Name, DOB, Address,
Phone No., SSN

Name, Category Color

Product A

City C1

Name, Address,
CEO, RevenueCompany A

Make, Model,
Year, Number Phone X

Person P

Date of Purchase, Price OWNS Date of Employment, Salary

Bought On

Lives_In

Works_For

RDF Example

GraphDB: RDF Graphs

Subject Object{Predicate}

RDF – Example
RDF Example

City

Year — Y2

Every Statement — 2 Vertices
Every Statement — 1 Edge
Infer Meanings and Relationships
Semantics — Just Rules
Rules  Ontologies

Phone
Model - M1

Phone
Make Name

Product

Product P1

Has_A
Phone

Bought_In

City C1

Is_APerson P Lives_In

OWNS

Is_A

Bought

Is_A

What is RDF – Resource Description FrameworkRDF Example

RDF and LPG: Graphs of Different Flavor

LPGs are easy to
transform into RDF

The advantages of RDF’s
finer grained model:
● Schema and data can be

queried together

● Property values are nodes and
can be described

● Full control over the structure of
the metadata

RDF

Three-part structures called triples.

Each triple component must have a unique identifier known as the Uniform Resource Identifier (URI),
which looks like a web page address. (Except Object)

RDF Example

RDF Example

RDF Example

LPGs Vs RDFs

RDF
(Resource Description Framework, Triple Store)

LPG
(Labeled Property Graph)

Optimized for:
 Semantic Knowledge Graphs

 Complex Ontologies & Taxonomies

 Inferencing / Reasoning

 Standards Based

 Linked Open Data

 Data Re-usability

 Machine Readable

 Semantic Web Standards

Optimized for:
Index-Free Adjacency
Very Deep Traversals
Graph Data Science
ML Integration
Single Purpose Graphs
High Concurrency
Ease of Deployment

Graph Technologies

LPGs Vs RDFs

LPGs Vs RDFs

Advantages of LPG Over RDF are gone

Knowledge Graphs are Represented in RDF

o RDF(S), OWL, SPARQL and SHACL is a stack of W3C semantic standards
 Global identity => Interoperability
 Formal semantics => Explicit Common Meaning
 Standardization => Unification
 Validation => Quality

o Property Graphs are Designed for Graph Analytics
 GREMLIN and Cypher are good for searching path in a graph, but
 PGs lack of standardization, formal semantics and even schema language

making sense of text and data

Fundamentals – RDF Modeling

DMZ, 1st March 2023

RDF – Resource Description Framework

Standard data model for graph data structures

Describing resources on the web or elsewhere

Resource  any entity that we want to describe

Store in “Serializations" such as Turtle, JSON-LD, N-Triples, and RDF/XML.

Any tool conforms to RDF standards can read all formats

Standard maintained by W3C

RDF-related standards include Turtle, JSON-LD, N-Triples, and RDF/XML

RDF

Triple

Three-part statements known as triples.

RDF data is a set of triples.

Triple states certain resource, for a certain property, has a certain value.

Call these three parts the subject, predicate and object.
For example: cust239 name "Adam Lee"

This is a vague

Term "name" mean different things in different contexts, and many different
companies may have a customer 239.

RDF requires subject and predicate of a triple have URIs to unambiguously
identify what they're referencing.

Triple

URI – Uniform Resource Identifiers

Look like URLs, but they're not required to be locators

Describe where something is; they may just serve as identifiers.

IRI, or Internationalized Resource Identifier - URIs allow a wider choice of characters than the URI

URIs come from known, standardized vocabularies, or your organization make up your own

RDF Schema - Define vocabularies from Scratch OR Extension of Existing ones

Organizations use combination of standardized vocabularies and custom ones

Example : Predicate uses the mbox property from the standard FOAF vocabulary to show email address.

<http://www.altostrat.com/ns/cust239> <http://xmlns.com/foaf/0.1/mbox>
"adam.lee@cymbalgroup.com" .

Advantage of URIs data can more easily interoperate and integrate with data from other sources

Using URIs to represent things makes easier to connect Our data with Other data

URI – Uniform Resource Identifier

http://xmlns.com/foaf/0.1/

URI

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix d: <http://www.ontotext.com/academy/rdf/data#> .

<d:person_12345>
 rdf:type foaf:Person ;
 foaf:name "Stephanie Black" ;
 foaf:givenname "Stephanie" ;
 foaf:family_name "Black" ;
 foaf:topic_interest
<http://www.ontotext.com/academy/skos/music#composition_johann_sebastian_bach> .

URIs

https://academy.ontotext.com/02.semantic-models/img/image2.png

Blank NodesBlank Node

Comma and Semi-ColonSemicolon in a Triple

Comma and Semi-ColonComma in a Triple

Link Between Nodes

Property representing topic of interest points to the external node composition_johann_ebastian_bach.
This node described with the following URI identifiers and additional properties as name-value pairs:

broader concept is pointing to resource "genre_baroque" which could be described as such

Link between Nodes

Link Between NodesLink between Nodes

Link Between Nodes

Combining different RDF datasets is easy.

Combine examples 2 and 3, we can say Stephanie Black (person_12345) has an interest
(foaf:topic_interest) in Johann Sebastian Bach (composition_johann_sebastian_bach) Which is
related to the Baroque genre (genre_baroque).

Navigate graph reverse way by locating genre_baroque and navigate the graph in the reverse
direction to find all people interested in this style of music.

Link between Nodes

Example

Turtle uses the # character to comment out the rest of a given line.

@prefix as: <http://www.altostrat.com/ns/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix schema: <https://schema.org/> .

as:cust239 foaf:mbox "adam.lee@cymbalgroup.com" ;
 foaf:givenname "Adam" ;
 foaf:family_name "Lee" .

as:cust725 foaf:givenname "Claire" ;
 foaf:family_name "Graham" ;
 schema:follows as:cust016 .

as:cust016 foaf:givenname "Andrea" ;
 foaf:family_name "Gray" ;
 schema:follows as:cust239 ;
 schema:follows as:cust644 .

as:cust644 foaf:givenname "John" ;
 foaf:family_name "Bell" .

as:cust239 schema:follows as:cust725 .

Example

Schemas and Ontologies

Give more context about the data

• List the Classes of Entities
• Relationships between Classes
• Properties

Describe semantics about the classes, properties, and their relationships

W3C RDF Schema standard is sometimes called RDFS

Schemas and Ontologies

Schemas and Ontologies

First triple uses rdf and rdfs vocabularies to declare a class of resources called as:Person

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

as:Person rdf:type rdfs:Class .
as:Person a rdfs:Class .

as:Customer rdfs:subClassOf as:Person .
as:cust644 a as:Customer .

Nothing to prevent as:cust644 from being an instance of other related or unrelated
classes such as foaf:Person or as:Teacher

Schemas and Ontologies

Properties
rdfs:domain means it is a member of the class named in that triple's object.

Means any resource that has as:familyName or as:givenName property is an instance of the as:Person class

Doesn't say it's required for an as:Person instance to have an as:familyName value

Properties exist independently of classes

Unintuitive to people accustomed to OOAD

Adds flexibility when building model with external data whose original model may not be documented a common
scenario in data integration projects.

Subproperties of properties

as:givenName rdfs:subPropertyOf rdf:label .
as:familyName rdfs:subPropertyOf rdf:label .

rdfs:subClassOf and rdfs:subPropertyOf  data's structure its relationship to other known schemas

Properties

Properties

as:familyName a rdf:Property .
as:givenName a rdf:Property .
as:memberSince a rdf:Property .

Schema properties go with certain classes:

as:familyName rdfs:domain as:Person .
as:givenName rdfs:domain as:Person .
as:memberSince rdfs:domain rdf:Customer .

OWL Ontologies

W3C standard
Adds information about Classes & Properties to build a Schema

Richer model of a domain than Class and Property

Describe Simple or Complex Conditions for Class Membership

Life sciences uses this with inference engines to compute which treatments may be candidates to address a new medical
condition.

Inference engine that can implement the entire OWL Full

@prefix owl: <http://www.w3.org/2002/07/owl#> .

as:cust239 as:spouse as:cust016 .
as:spouse a owl:SymmetricProperty .

SPARQL Query

PREFIX as: <http://www.altostrat.com/ns/>
SELECT ?cust ?custSpouse
WHERE {
 ?cust as:spouse ?custSpouse
}

cust custSpouse

http://www.altostrat.com/ns/cust239 http://www.altostrat.com/ns/cust016

http://www.altostrat.com/ns/cust016 http://www.altostrat.com/ns/cust239

OWL Ontologies

Which Schema / Ontologies to use

Use an existing schema or ontology which makes your data interoperable

Creating own from Scratch gives Customizability but Reduces Interoperability

Look for an existing schema or ontology that describes the data

Find one that almost but not quite completely meets your needs.

Customizability of RDFS schemas and OWL ontologies becomes very useful.

vCard Ontology describes most of what you need about people - base class of vcard:Individual

Way to describe customers
use vCard ontology & add own customer class as a subclass of its existing vcard:Individual class:

as:Customer rdfs:subClassOf vcard:Individual .

Declare custom as:memberSince & as:goldStarCustomer properties use with as:Customer instances
Use vcard:given-name and vcard:last-name Properties with those instances

Which Schemas / Ontologies to Use

SHACL – (Shape Constraint Language)
Data Quality & Consistency

rdfs:domain indicates that as:familyName property goes with the as:Person class

Doesn't mean it's required for an as:Person instance to have an as:familyName value

Define constraints and check as:Person resources meet this condition

Define constraints by creating "shapes", sets of triples that use properties and classes from the
SHACL vocabulary

SHACL – Shape Constraints Language - DQ

SHACL – (Shape Constraint Language)
Data Quality & Consistency

Customer data make as:memberSince property a required value.
Value no earlier than January 1, 2020

@prefix as: <http://www.altostrat.com/ns/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

as:CustomerShape
 a sh:NodeShape ;
 sh:targetClass as:Customer ;
 sh:property as:memberSinceShape .

as:memberSinceShape
 a sh:PropertyShape ;
 sh:path as:memberSince ;
 sh:datatype xsd:date ;
 sh:minInclusive "2020-01-01"^^xsd:date ;
 sh:minCount 1 ;
 sh:maxCount 1 .

SHACL – Shape Constraints Language - DQ

SHACL – (Shape Constraint Language)

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix as: <http://www.altostrat.com/ns/> .

as:cust644 a as:Customer ;
 as:memberSince "2023-10-08"^^xsd:date .

as:cust755 a as:Customer ;
 as:memberSince "2019-03-14"^^xsd:date .

as:cust947 a as:Customer .

Tool Validate dataset against set of SHACL constraints

Resulting report in RDF

Easier to add validation process to an RDF-based pipeline of data processing

SHACL - Example

Data Quality & Consistency - SHACL

_:8f6e49eb7f54453fb89a2d771c8e958346467 a sh:ValidationResult;
 sh:focusNode <http://www.altostrat.com/ns/cust947>;
 rsx:shapesGraph rdf4j:SHACLShapeGraph;
 sh:resultPath <http://www.altostrat.com/ns/memberSince>;
 sh:sourceConstraintComponent sh:MinCountConstraintComponent;
 sh:resultSeverity sh:Violation;
 sh:sourceShape <http://www.altostrat.com/ns/memberSinceShape> .

_:8f6e49eb7f54453fb89a2d771c8e958346469 a sh:ValidationResult;
 sh:focusNode <http://www.altostrat.com/ns/cust755>;
 rsx:shapesGraph rdf4j:SHACLShapeGraph;
 sh:value "2019-03-14"^^xsd:date;
 sh:resultPath <http://www.altostrat.com/ns/memberSince>;
 sh:sourceConstraintComponent sh:MinInclusiveConstraintComponent;
 sh:resultSeverity sh:Violation;
 sh:sourceShape <http://www.altostrat.com/ns/memberSinceShape> .

SHACL - Results

Data Quality & Consistency - SHACL

http://www.altostrat.com/ns/cust947 node violated sh:MinCountConstraintComponent for memberSince property.

Had no values for this property and was required to have a minimum of one.

cust755 as:memberSince value of "2019-03-14" violated the sh:MinInclusiveConstraintComponent.

Value was lower than one specified to be the minimum allowable one

SHACL - Results

Example

Show
https://www.w3.org/2006/vcard/ns#.

Explicit schema reduces ambiguity of data while integrating or sharing

When publishing your data, other systems may recognize schema and
do the same mapping on their side.

The data is all linked to a specific schema, it is possible to visualize
definition by extending the schema in the graph.

Example

ExampleExample

https://academy.ontotext.com/02.semantic-models/img/image4.png

Describes Persons, Activities and their Relations to other People and Objects.

Classes & Properties in the FOAF ontology.
(Classes begin with UPPERCASE letters and Properties with lowercase)

•Basics :
•Agent, Person, name, nick, title, homepage, mbox, mbox_sha1sum, img, depiction, surname, family_name,
givenname, firstName

•Personal Info:
•weblog, knows, interest, currentProject, pastProject, plan, based_near, workplaceHomepage, workInfoHomepage, sc
hoolHomepage, topic_interest, publications, geekcode, myersBriggs, dnaChecksum

•Projects and Groups: Project, Organization, Group, member, membershipClass, fundedBy, theme

•Documents and Images:
Document, Image, PersonalProfileDocument, topic, primaryTopic, tipjar, sha1, made, thumbnail, logo

•OnlineAccounts : OnlineAccount, OnlineChatAccount, OnlineEcommerceAccount, OnlineGamingAccount,
holdsAccount, accountServiceHomepage, accountName, icqChatID, msnChatID, aimChatID, jabberID,yahooChatID

Example – FOAF – Friend of Friend - Ontology

FOAF Example

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://www.ontotext.com/academy/rdf/data#person_12345>
 a foaf:Person ;
 foaf:name "Stephanie Black" ;
 foaf:givenname "Stephanie" ;
 foaf:family_name "Black" ;
 foaf:homepage <http://www.stephanie_black.com> ;
 foaf:knows <http://www.ontotext.com/academy/rdf/data#person_54321>;
 foaf:topic_interest <http://www.ontotext.com/academy/skos/music#composition_johann_sebastian_bach>,
 <http://www.ontotext.com/academy/skos/music#composition_aaron_copland> ;
 foaf:currentProject <http://www.ontotext.com/academy/rdf/data#project_12345> .

<http://www.ontotext.com/academy/rdf/data#project_12345>
 a foaf:Project ;
 foaf:name "Building a classical music catalog" ;
 foaf:homepage <https://www.music.com/catalog/> .

<http://www.ontotext.com/academy/rdf/data#group_00001>
 a foaf:Group ;
 foaf:name "The Classical music lovers" ;
 foaf:member <http://www.ontotext.com/academy/rdf/data#person_12345>,
<http://www.ontotext.com/academy/rdf/data#person_54321> .

FOAF - Example

RDFS

Vocabulary describing Classes / Properties -- building blocks to create a schema

Define Classes, Properties, Relationships

Classes:
rdfs:Resource, rdfs:Class, rdfs:Literal, rdfs:Datatype, rdf:langString, rdf:HTML, rdf:XMLLiteral, rdf:JSON, rdf:Property

Properties :
rdfs:range, rdfs:domain, rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:label, rdfs:comment

Declaring property uses triple that names something as an instance of the rdfs:Property Class

@prefix acad: <http://www.ontotext.com/academy/rdf/data#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

acad:serviceProvider a rdfs:Property .

Describes properties separately, with optional information about the resource class to which they apply.
RDFS also lets you define a property as a subproperty of another one.

RDFS

SKOS

W3C Recommendation

Representation of Thesauri, Classification Schemes, Taxonomies, Subject-heading systems

Express a Parent-Child relationship between resources

Concepts: Concept, ConceptScheme, inScheme, hasTopConcept, topConceptOf
Labels & Notation: prefLabel, altLabel, hiddenLabel, notation

Semantic Relations: broader, narrower, related, broaderTransitive, narrowerTransitive,
semanticRelation

Mapping Properties: broadMatch, narrowMatch, relatedMatch, closeMatch

Collections: Collection, orderedCollection, member, memberList

Documentation: note, changeNote, definition, editorialNote, example, historyNote, scopeNote

SKOS

SKOS

State "Brandenburg Concertos" is a narrower concept of "Johann Sebastian Bach" compositions.

Opposite relation by saying that "Johann Sebastian Bach" composition is a broader concept of
"Brandenburg Concertos".

Property skos:related - Relationship with another Concept where no hierarchy or generality
relation is implied.

Describing relationships between concepts in one part of a hierarchy with concepts in another
part, or even in a different hierarchy.

SKOS Example

https://academy.ontotext.com/02.semantic-models/img/image14.png

SKOS

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

<http://www.ontotext.com/academy/skos/music#composition_johann_sebastian_bach>
 a skos:Concept ;
 skos:prefLabel "Johann Sebastian Bach" ;
 skos:narrower
<http://www.ontotext.com/academy/skos/music#music_brandenburg_concertos> ;
 skos:related <http://dbpedia.org/resource/Johann_Sebastian_Bach> .

<http://www.ontotext.com/academy/skos/music#music_brandenburg_concertos>
 a skos:Concept ;
 skos:prefLabel "Brandenburg Concertos" ;
 skos:broader
<http://www.ontotext.com/academy/skos/music#composition_johann_sebastian_bach> ;
 skos:related <http://dbpedia.org/resource/Brandenburg_Concertos> .

SKOS

Linked Open Data

Reuse data already available from Linked Open Data Cloud (LOD)

Interlinked datasets in RDF

31 billion RDF triples, interlinked by around 504 million RDF links

Key nodes of the cloud include DBpedia (an RDF extract of Wikipedia) and
Wikidata

Linked Open Data

https://lod-cloud.net/

Linked Open Data - 2008LOD Example - 2008

Linked Open Data - 2023LOD Example - 2023

Linked Open Data - 2023

Access content of LOD both as a human or as a machine (reading RDF).

As human use search interface to locate an entry such as "Johann Sebastian Bach".
The corresponding web page will show you all its attributes in a tabular format.

Linked Open Data - 2023

Linked Open Data - 2023

Machine access this information in RDF format; Excerpt of DBpedia's data on JS Bach:
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix dbp: <http://dbpedia.org/property/> .

<http://dbpedia.org/resource/Johann_Sebastian_Bach>
 a foaf:Person ;
 rdfs:label "Johann Sebastian Bach"@en, "Jean-Sébastien Bach"@fr ;
 dbo:birthDate "1685-03-31"^^xsd:date ;
 dbp:birthPlace <http://dbpedia.org/resource/Eisenach> ;
 dbo:birthYear "1685"^^xsd:Year ;
 dbo:deathYear "1750"^^xsd:Year ;
 dbo:deathDate "1750-07-28"^^xsd:date ;
 dbp:deathPlace <http://dbpedia.org/resource/Leipzig> ;
 owl:sameAs <http://www.wikidata.org/entity/Q1339> ;
 dbo:soundRecording <http://dbpedia.org/resource/Johann_Sebastian_Bach_Sound_1>,
<http://dbpedia.org/resource/Johann_Sebastian_Bach_Sound_2>,
<http://dbpedia.org/resource/Johann_Sebastian_Bach_Sound_3> .

Linked Open Data - 2023

Linked Open Data - 2023

Call comes from an application
Server sends information in RDF.

Call from browser redirected to web page.
(Technically, the resource/ part of the URL will be replaced by page/.)

Redirection done automatically depending on the value of the HTTP User-Agent
request header coming from the client.

• http://dbpedia.org/resource/Johann_Sebastian_Bach
• http://dbpedia.org/page/Johann_Sebastian_Bach

Linked Open Data - 2023

Linked Open Data - 2023

Use LOD to complement information of graph.

Using skos:related to link current resource to entry in DBpedia

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

<http://www.ontotext.com/academy/skos/music#composition_johann_sebastian_bach>
 a skos:Concept ;
 skos:prefLabel "Johann Sebastian Bach" ;
 skos:narrower <http://www.ontotext.com/academy/skos/music#music_brandenburg_concertos> ;
skos:related <http://dbpedia.org/resource/Johann_Sebastian_Bach> .

<http://www.ontotext.com/academy/skos/music#music_brandenburg_concertos>
 a skos:Concept ;
 skos:prefLabel "Brandenburg Concertos" ;
 skos:broader <http://www.ontotext.com/academy/skos/music#composition_johann_sebastian_bach> ;
skos:related <http://dbpedia.org/resource/Brandenburg_Concertos> .

Linked Open Data - 2023

SHACL – Shapes Constraint Language

Number of values that a property may have,
• Type of values,
• Numeric Ranges,
• String Matching,
• Logical combinations of constraints.

Alert inappropriate values in datasets improve the quality of your data.

Properties that enable this checking of conditions include:
• Cardinality: sh:minCount, sh:maxCount
• Types of values: sh:class, sh:datatype, sh:nodeKind
• Values: sh:hasValue, sh:in, dash:hasValueIn
• Ranges: sh:minInclusive, sh:maxInclusive, sh:minExclusive, sh:maxExclusive
• String: sh:minLength, sh:maxLength, sh:pattern (and sh:flags), sh:languageIn, sh:uniqueLang
• Logical constraints: sh:and sh:not, sh:or
• Condition: sh:maxCount, sh:minCount,sh:nodeKind, sh:path, sh:inversePath, sh:property, sh:target,

sh:targetClass, sh:targetNode, sh:targetObjectsOf, rsx:targetShape, sh:targetSubjectsOf
• Administration: sh:deactivated, sh:message, sh:severity, sh:shapesGraph

SHACL – Shape Constraint Language

SHACL – Shapes Constraint Language

Conditions expressed in RDF and are built around "shapes"
Describe specific constraint of a target.

Each target can be specified in several ways:

• sh:targetClass– All instances of a class
• sh:targetNode– Specific nodes
• sh:targetObjectsOf– All object of a specific property
• sh:targetSubjectsOf– All subjects of a specific property

SHACL – Shape Constraint Language

SHACL ArchitectureSHACL Architecture

SPARQL

SPARQL uses the # to comment out a line

SELECT * WHERE {
?s ?p ?o .

}

• SPARQL Protocol and RDF Query Language query data source in RDF

• SPARQL query Contain Triple Patterns

• Each of Subject, Predicate and Object may be a Variable.

• Not case-sensitive

List all resources that have a type of foaf:Person

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {
?s rdf:type foaf:Person .

}

SPARQL

SPARQL

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {
 ?s a foaf:Person .
 ?s foaf:name ?n
}

• Compact syntax that does not repeat the ?s variable in different statements.
• Using a semicolon ";" at the end of a triple pattern

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {
 ?s a foaf:Person ;
 foaf:name ?n .
}

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {
 ?s a foaf:Person ;
 foaf:name "Stephanie Black" .
}

PREFIX data: <http://www.ontotext.com/academy/rdf/data#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {
 data:person_12345 a foaf:Person ;
 foaf:name ?n .
}

SPARQL Examples

SPARQLSPARQL Examples

Extract - all people who have only a specific interest in two types of music composition:
Johann Sebastian Bach and Sergei Rachmaninoff

https://academy.ontotext.com/03.sparql/img/image16.png

SPARQL

Extract - all people who have only a specific interest in two types of music composition:
Johann Sebastian Bach and Sergei Rachmaninoff

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX music: <http://www.ontotext.com/academy/skos/music#>

SELECT * WHERE {
 ?s a foaf:Person ;
 foaf:name ?n ;
 foaf:topic_interest music:composition_johann_sebastian_bach ;
 foaf:topic_interest music:composition_sergei_rachmaninoff .
}

SPARQL Examples

SPARQL

Know Stephanie's musical interests but want to list them

SPARQL Examples

https://academy.ontotext.com/03.sparql/img/image16.png

SPARQL

Know Stephanie's musical interests but want to list them

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?interestTopic WHERE {
 ?s a foaf:Person ;
 foaf:name "Stephanie Black" ;
 foaf:topic_interest ?interestTopic .
}

SPARQL Examples

SPARQL

Result URI identifiers of interest nodes

Nodes have properties

Want to see them ? Nodes have a skos:prefLabel property that shows a name for the interest topic

https://academy.ontotext.com/03.sparql/img/image16.png

SPARQL

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

SELECT ?topicName WHERE {
 ?s a foaf:Person ;
 foaf:name "Stephanie Black" ;
 foaf:topic_interest ?interestTopic .

 ?interestTopic skos:prefLabel ?topicName .
}

SPARQL Examples

SPARQL

Names of the foaf:Person instances and their nicknames if they have
one

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?nickname WHERE {
 ?p a foaf:Person ;
 foaf:name ?name .
 OPTIONAL { ?p foaf:nick ?nickname . }
}

SPARQL Examples – Optional Clause

https://academy.ontotext.com/03.sparql/img/image16.png

SPARQL – Property Path

https://academy.ontotext.com/03.sparql/img/image9.png

SPARQL – Property Path

Identify resources distant from each other on the graph.

Looking for all instances of foaf:Person who have a foaf:name property.

Go further for other resources that are linked to the resulting nodes by a rdfs:seeAlso relationship

Target of rdfs:seeAlso a vcard:Individual should have a vcard:hasEmail property.

Looking to find all persons who have a business card (vcard) with an email address attached to it.

SPARQL Example - Traversing

SPARQL – Property Path

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>

SELECT ?s ?n ?email WHERE {
 ?s a foaf:Person ;
 foaf:name ?n ;
 rdfs:seeAlso ?vcard .

 ?vcard a vcard:Individual ;
 vcard:hasEmail ?email
}

SPARQL Example - Traversing

SPARQL – Property Path

Further navigate adding more statements to the query.

Use vCard instance ?vcard that and follow its vcard:hasAddress relationship to a resource of type
vcard:Address

that has a vcard:country-name.

Find address attached to the business card (vcard) and locate the country name of this address.

SPARQL Example - Traversing

SPARQL – Property Path

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>

SELECT ?s ?n ?email ?country WHERE {
 ?s a foaf:Person ;
 foaf:name ?n ;
 rdfs:seeAlso ?vcard .

 ?vcard a vcard:Individual ;
 vcard:hasEmail ?email ;
 vcard:hasAddress ?addr .

 ?addr a vcard:Address ;
 vcard:country-name ?country
}

SPARQL Example - Traversing

SPARQL – Property Path

Express the graph route

/ to denote moving to a subsequent arc
(edge on the graph corresponding to a property path step).

^ indicates the opposite navigation direction.

/ Sequence path

^ Reverse path

| Alternative path

* Path of zero or more occurrences

+ Path of one or more occurrences

? Path of zero or onePREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>

SELECT ?s ?n ?email WHERE {
 ?s a foaf:Person ;
 foaf:name ?n ;
 rdfs:seeAlso / vcard:hasEmail ?email
}

SPARQL – Path Traversal

SPARQL – Property Path

Reuse sequence path / to traverse further in the relationship

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>

SELECT ?s ?n ?country WHERE {
 ?s a foaf:Person ;
 foaf:name ?n ;
 rdfs:seeAlso / vcard:hasAddress / vcard:country-name ?country
}

SPARQL – Path Traversal

SPARQL – Property Path

Reverse path ^ works the same way but navigating the arc in the reverse direction.

Starts by finding all resources that have a vcard:country-name property.

If found, looks for the incoming arc vcard:hasAddress.

Repeats the same operation with the incoming rdfs:seeAlso.

Finally, it does a descendant search to find the value of the foaf:name property.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {

 ?addr vcard:country-name ?country;

SPARQL – Path Traversal

SPARQL – Property Path

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT * WHERE {

 ?addr vcard:country-name ?country;
 ^vcard:hasAddress / ^rdfs:seeAlso / foaf:name ?n .
}

SPARQL – Path Traversal

SPARQL – Alternative Path

Branch to different relations
Selects All persons have at least one relation
foaf:topic_interest OR foaf:interest.

If none exist, selection of node invalidated
If at least one relation exists, Query succeed,
and corresponding resources will be selected.

SPARQL – Path Traversal

https://academy.ontotext.com/03.sparql/img/image1.png

SPARQL – Alternative Path

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

SELECT ?s ?interest WHERE {
 ?s a foaf:Person ;
 foaf:name ?n ;
 foaf:topic_interest | foaf:interest ?i .

 ?i skos:prefLabel ?interest
}

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

SELECT ?s ?interest WHERE {
 ?s a foaf:Person ;
 foaf:name ?n ;
 (foaf:topic_interest | foaf:interest) / skos:prefLabel ?interest
}

SPARQL – Alternative Path Traversal

SPARQL – Additional

FILTER() expression limits the search based on conditions.
Expression specifies boolean condition, and then data for which that condition is true will be returned.

Can combine the FILTER() expression with different operators such as:

String: STRLEN, SUBSTR, UCASE, LCASE, STRSTARTS, STRENDS, CONTAINS, STRBEFORE,
STRAFTER, ENCODE_FOR_URI
Logical: !, &&, ||
Comparison: =, !=, >, <, IN, NOT IN
Math: abs, round, ceil, floor, RAND, +, -, *, /, ``
Match: langMatches, REGEX, REPLACE
Conditional: IF, COALESCE, EXISTS, NOT EXISTS
Date/Time: NOW, YEAR, MONTH, DAY, HOURS, MINUTES, SECONDS, TIMEZONE, TZ
Tests: isIRI, isURI, isBlank, isLiteral, isNumeric, bound
Hashing: MD5, SHA1, SHA256, SHA512

SPARQL - Filters

SPARQL – Additional

Logical and Comparison operators
B
Regular Expressions
SET Operations
Sorting and Limiting and OFFSetting Operations
Functions – Concat, Coalesce
Aggregation
Not Exists - you retrieve data that is missing a specified kind of accompanying data.

Example - Lists people with a family name of "Brown" that have no friends (or rather, for
whom we have no foaf:knows data

SPARQL –Operations

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?person WHERE {
 ?person a foaf:Person ;
 foaf:family_name "Brown" .
 FILTER NOT EXISTS { ?person foaf:knows ?friend }
}

SPARQL – Aggregation

Finding the number of people in each country

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX vcard: <http://www.w3.org/2006/vcard/ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?country (COUNT(?p) as ?total) WHERE {
 ?p a foaf:Person ;
 rdfs:seeAlso / vcard:hasAddress / vcard:country-name ?country
}
GROUP BY ?country

SPARQL - Aggregation

SPARQL – DESCRIBE

When not familiar with a dataset's structure

Discover properties and relationship of a resource.

Returns triples

W3C SPARQL specification is vague about exactly what a query processor is
required to return

GraphDB returns all triples that have that URI as a subject or object.

DESCRIBE <http://www.ontotext.com/academy/rdf/data#person_9249006>

SPARQL - DESCRIBE

SPARQL – ASK

Whether a query pattern matches or not

Result Boolean true or false.

Example asks if anyone has the salary shown.

It will return a boolean true.

PREFIX dbo: <http://dbpedia.org/ontology/>

ASK { ?person dbo:salary "3.800000e+1"^^xsd:double}

SPARQL - ASK

SPARQL – Query Federation

SERVICE query processor to pass a graph pattern or a SELECT query to a service

Retrieve resource Johann_Sebastian_Bach in DBpedia

Using SPARQL endpoint that makes structured data from Wikipedia available as RDF triples.

Try to connect yourself to the DBpedia entry as a human

http://dbpedia.org/page/Johann_Sebastian_Bach

SPARQL – Query Federation

SPARQL – Query Federation

Machine Readable RDFs

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT *
WHERE {

 SERVICE <https://dbpedia.org/sparql> {
 dbr:Johann_Sebastian_Bach rdfs:label ?label ;
 dbo:abstract ?abstract .
 FILTER (LANG(?label) = "en")
 FILTER (LANG(?abstract) = "en")
 }

}

SPARQL – Query Federation

SPARQL – Query Federation

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

CONSTRUCT {
 <http://www.ontotext.com/academy/rdf/maurice-ravel> ?p ?o
}
WHERE {
 {
 SERVICE <https://dbpedia.org/sparql> {
 dbr:Maurice_Ravel ?p ?o .
 FILTER (isLiteral(?o) && LANG(?o) = "en")
 }
 }
 UNION {
 SERVICE <https://query.wikidata.org/sparql> {
 <http://www.wikidata.org/entity/Q1178> ?p ?o .
 FILTER (isLiteral(?o) && LANG(?o) = "en")
 }
 }
}

SPARQL – Query Federation

Ontology DNA
Taxonomy RNA
Vocabulary / Glossary
Graph Databases
Semantic Mapping Tools / Languages
Data Mapping Framework
ETL / ELT Tools

Main Components in Building a KG

What Is a Taxonomy

o Information model  Describe, Structural Hierarchy

o Effective for Organizing Data

o Capture Context, Meaning  Easy to Find & Understand

o Form of Classification Scheme

o Knowledge Map

Foundation for Smart Search/Discovery Applications

Finding Appropriate Term / Provide Metadata and Tagging

Models how Terms / Entities organized Hierarchically

Categorize data to be found / retrieved

Supports Better Findability, Precision/ Recall metrics

Why Taxonomy

What Is Ontology

• Schema, Structure, and Rules for Graph Data

• Blueprint / Common Data Model

• Identifies/Distinguishes Concepts & Relationships

• Formal Specifications of Terms in Domain

• Defines : Entities, Relationships & Properties

• Semantic Types, Properties and Relations

Ontology Benefits

Avoid / Minimizes Ambiguity

Used for – Interoperability (Shared Vocabularies) + Inference

Shared Vocabulary  Describe Semantics

Ontology

Ontology + Taxonomy  Semantics

SCHEMA

Class Type

Property Type

Relationship Type

+

Constraints (SHACL)

(Optional)

TAXONOMY

Concepts

Classes

making sense of text and data

FIBO RDF Modeling

DMZ, 1st March 2023

• Conceptual Model developed by the Enterprise Data Management Council (EDMC)

• Supports an open process for maintenance and development of FIBO

• Goal of FIBO provide precise meaning to the data artifacts that describe the
business of finance

• Contains entities / associations describe information needed to build, extend &
integrate financial business applications

• Specified using RDF(S) and OWL

• Analysis using SPARQL and OWL inference

FIBO – Financial Industry Business Ontology

https://spec.edmcouncil.org/fibo/FIBO-Groups

KG High-level Application Architecture

o Knowledge Representation - Express Domain Knowledge

o Data Interoperability - Common Vocabulary to Describe and Exchange data;

o Reusability and Extensibility – Use / Reuse / Refine

o Inference and Reasoning - Derive New Insights and Facts

o Abstractions Alignment - Normalization and Harmonization

o Improved Discoverability

o Content & Knowledge Management

Key capabilities from FIBO powered KG

The Autocomplete index is one
of the most important utilities
of the GraphDB Workbench.

It offers suggestions for the
IRIs’ local names in the SPARQL
editor, the View Resource page,
Search RDF resources and in
the OntoRefine Mapping
editor.

Autocomplete

https://graphdb.ontotext.com/documentation/enterprise/autocomplete-index.html

RDF Rank is an algorithm that identifies the more important or more popular entities in the
repository by examining their interconnectedness. The popularity of entities can then be
used to order the query results in a similar way to the internet search engines, the way
Google orders search results using PageRank. This can be used with the Reconciliation
server or for your own API.

PREFIX rank: <http://www.ontotext.com/owlim/RDFRank#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT * WHERE {
 ?entity a <https://www.omg.org/spec/LCC/Countries/CountryRepresentation/Country>;
 rdfs:label ?name;
 rank:hasRDFRank5 ?rank .
}
ORDER BY DESC(?rank) LIMIT 100

Ranking

https://graphdb.ontotext.com/documentation/10.2/ranking-results.html
https://en.wikipedia.org/wiki/PageRank

The Prominence functionality, the prominence for a resource is defined as the sum of the number of

outgoing connections (where the resource is the subject of a triple) and the number of incoming

connections (where the resource is the object of a triple). The numbers are automatically maintained by

GraphDB.

Here are the most prominent Public companies in FIBO

Prominence

PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?node ?name ?prominence {
 ?node <http://www.ontotext.com/owlim/entity#hasProminence> ?prominence;
 rdfs:label ?name;
 a <https://spec.edmcouncil.org/fibo/ontology/BE/Corporations/Corporations/PubliclyHeldCompany>.
a owl:NamedIndividual.
} order by desc(?prominence)

https://graphdb.ontotext.com/documentation/10.2/ranking-results.html#prominence

Advantages of Semantic Technology is various IR Search as:

● Full-Text Search (Lucene style), including integration with Elastic and SOLR
● Text Similarity (word2vec)
● Graph Similarity
● Semantic Properties (synonyms, hypernyms)
● Taxonomic Structure (skos:broader, skos:narrower)
● Visual of the graph relationships

Search and Discovery Paradigms

Semantic Vectors: Text-based similarity

4 types of Semantic Vectors Similarity searches:

1. Term to Term - Closest Semantically Related Terms
2. Term to Document - Most Representative Documents for a specific searched Term
3. Document to Term - Most Representative Terms for a Specific Document
4. Document to Document - Closest Related Texts

Similarity Plugin integrates Semantic Vectors Library and Random Indexing algorithm.
Algorithm uses tokenizer to translate documents to Sequences of Words (terms) to represent a
Vector Space Model

Feature of the algorithm is the Dimensionality Reduction based on Random Projection
Initial Vector State is generated randomly.

Semantic Vectors: Term to Term Example

Semantic Vectors: Doc to Doc Example

OntoRefine

ex:corporation_WMT a fibo-be-corp-corp:PubliclyHeldCompany

rdfs:label "Walmart"

CSV headers

Mapping

RDF

OntoRefine

Database

Configuration

Data Integration from Relational Databases

Data Integration from Relational Databases

• SOTA for General Purpose Q&A

• Addresses key challenges of LLMs:

• Lack Domain Knowledge;

• Hard to Update Incrementally;

• Black boxes prone to hallucination.

• How it works :

• User selects parts of KGs to index;

• Documents are indexed by OpenAI and stored in a vector database;

• Full integration with SPARQL.

Talk To Your Graph

THANK YOU FOR
YOUR TIME!

THANK YOU FOR
YOUR TIME!

	making sense of text and data
	Slide Number 2
	making sense of text and data
	Slide Number 4
	Slide Number 5
	Slide Number 6
	making sense of text and data
	Slide Number 8
	Slide Number 9
	What Do We Do?
	The Big Picture of the Graph Platform
	GraphDB Essentials
	GraphDB Editions
	Multiple Operation and Deployment Options
	Architecture
	Access, Customization and Integration Points
	Query, Search and Retrieve
	Slide Number 18
	making sense of text and data
	Slide Number 20
	Examples of Knowledge Graphs
	What is a Knowledge Graph?
	Knowledge Graphs – Why, What and How
	Why Knowledge Graphs?
	Knowledge Graph Application Mindmap
	Slide Number 26
	Graphs to Knowledge Graphs
	Lineage with KGs
	Not Every Graph is a KG
	What Is a Knowledge Graph
	Semantic Building Blocks
	Semantic Foundational Capabilities
	KG Stack
	making sense of text and data
	LPG Example
	RDF Example
	GraphDB: RDF Graphs
	RDF Example
	RDF Example
	RDF and LPG: Graphs of Different Flavor
	RDF
	RDF Example
	RDF Example
	RDF Example
	LPGs Vs RDFs
	LPGs Vs RDFs
	LPGs Vs RDFs
	Advantages of LPG Over RDF are gone
	Knowledge Graphs are Represented in RDF
	making sense of text and data
	RDF
	Triple
	URI – Uniform Resource Identifier
	URIs
	Blank Node
	Semicolon in a Triple
	Comma in a Triple
	Link between Nodes
	Slide Number 59
	Link between Nodes
	Example
	Schemas and Ontologies
	Schemas and Ontologies
	Properties
	Slide Number 65
	OWL Ontologies
	Which Schemas / Ontologies to Use
	SHACL – Shape Constraints Language - DQ
	SHACL – Shape Constraints Language - DQ
	SHACL - Example
	SHACL - Results
	SHACL - Results
	Example
	Example
	Example – FOAF – Friend of Friend - Ontology
	FOAF - Example
	RDFS
	SKOS
	SKOS Example
	SKOS
	Linked Open Data
	LOD Example - 2008
	LOD Example - 2023
	Linked Open Data - 2023
	Linked Open Data - 2023
	Linked Open Data - 2023
	Linked Open Data - 2023
	SHACL – Shape Constraint Language
	SHACL – Shape Constraint Language
	SHACL Architecture
	SPARQL
	SPARQL Examples
	SPARQL Examples
	SPARQL Examples
	SPARQL Examples
	SPARQL Examples
	Slide Number 97
	SPARQL Examples
	SPARQL Examples – Optional Clause
	Slide Number 100
	SPARQL Example - Traversing
	SPARQL Example - Traversing
	SPARQL Example - Traversing
	SPARQL Example - Traversing
	SPARQL – Path Traversal
	SPARQL – Path Traversal
	SPARQL – Path Traversal
	SPARQL – Path Traversal
	SPARQL – Path Traversal
	SPARQL – Alternative Path Traversal
	SPARQL - Filters
	SPARQL –Operations
	SPARQL - Aggregation
	SPARQL - DESCRIBE
	SPARQL - ASK
	SPARQL – Query Federation
	SPARQL – Query Federation
	SPARQL – Query Federation
	Slide Number 119
	What Is a Taxonomy
	Slide Number 121
	What Is Ontology
	Ontology Benefits
	Ontology
	Ontology + Taxonomy  Semantics
	making sense of text and data
	Slide Number 127
	FIBO – Financial Industry Business Ontology
	KG High-level Application Architecture
	Key capabilities from FIBO powered KG
	Autocomplete
	Ranking
	Prominence
	Search and Discovery Paradigms
	Semantic Vectors: Text-based similarity
	Semantic Vectors: Term to Term Example
	Semantic Vectors: Doc to Doc Example
	OntoRefine
	OntoRefine
	Data Integration from Relational Databases
	Data Integration from Relational Databases
	Talk To Your Graph
	Slide Number 143

